
Vickie Braithwaite PhD
MRC Career Development Fellow (CDF)
MRC Human Nutrition Research

Rickets
Phosphate & Iron Metabolism
PhD: Rickets in The Gambia
MRC CDF

25% of British children in the 18th and 19th centuries

Rickets “English Disease”

- Rickets: defective calcification of the growth plates of long bones in children, producing characteristic deformities

Paterson D., Arch Dis Child, 1926

Most common non-communicable disease of the developing world

Rickets: Causes & Classification

Calcipaenic:
- Vitamin D deficiency
- Dietary Ca deficiency
- PTH + 1,25(OH)2D, 250HD3

Phosphopaenic:
- Urinary PO43- loss (FGF23 mediated)
- pO43-, PTH → FGF23

1. Phosphate homeostasis
 - Urinary phosphate excretion
 - Plasma phosphate

2. FGF23 and CKD

3. FGF23 and arterial calcification

↑ FGF23 is a predictor of mortality

Phosphate Metabolism: FGF23
Iron Metabolism

- Essential nutrient:
 - carrier of O₂ - haemoglobin
 - enzyme co-factors (CYPs)
 - Important for brain development

Iron Deficiency Anaemia: 4 billion

Figure 3.1b Anaemia as a public health problem by country: Pregnant women

- One of the most common nutrient deficiencies (50% of population in developing world)

MRC Keneba, The Gambia

- A poor, rural farming African village
- UVB-skin exposure for vitamin D synthesis
- Low Ca intakes: 200-400 mg/d
- High rates of iron deficiency
- Growth faltering, stunting, delayed puberty
- Rickets

Rickets in The Gambia

- ↑25OHD
- ↑PTH and 1,25(OH)₂D
- ↓dietary calcium
- ↑ALP
- ↓plasma phosphate
- ↑urinary phosphate excretion
- ↑FGF23

Rickets in The Gambia

- Elevated FGF23 associated with poor iron status
 - Poor iron status inversely associated FGF23 concentration
 - FGF23 decreases after supplementation with ferrous sulphate

MRC Career Development Fellowship

- **FGF23 & Iron Pathways and bone health:**
 1. Maternal iron status and infant bone mineral metabolism in The Gambia
 • Dr S Moore MRC HNR, Cambridge and The Gambia
 2. FGF23 & Phosphate loss in HIV positive women in South Africa
 • Dr M Hamill MRC HNR, Cambridge
 3. Iron supplementation trial and bone mineral metabolism in the iron deficient Cambridge women
 • Dr D Pereira MRC HNR, Cambridge
 4. Rickets in Malawi

Maternal Nutrition in Gambian mothers—
Effects on infant epigenetics

Maternal nutrition at conception modulates DNA methylation of human metastable epialleles

> Does maternal iron deficiency influence infant FGF23 regulation?

- ENID trial (ISRCTN492825450)
 - n=700 mother-infant pairs (PI. Dr Moore) MRC Keneba, The Gambia
- **Maternal:** blood sample, anthropology at booking, week 20 and week 30
- **Infant:** blood sample and anthropology in cord blood, and week 12, 24, 52, 78 and 104

Iron deficient mice during pregnancy—
offspring with altered phosphate homeostasis and bone

Does maternal iron deficiency influence infant FGF23 regulation?

- Relate maternal iron status to infant bone mineral metabolism:
 - Plasma phosphate and FGF23
 - Anthropometry
 - Bone mineral density (DXA)

- Maternal nutrition on infant bone health and antecedents of rickets.
Conclusions

- Rickets is re-emerging in the UK and is the most common non-communicable disease in children of the developing world
- Rickets in The Gambia combination of calcium deficiency and phosphate disruption modulated by iron deficiency?
 - Investigating novel links between iron and phosphate pathways
 - Maternal iron deficiency during pregnancy involved in infant phosphate metabolism, bone health and rickets?
 - Implications for maternal nutrition